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1. Introduction

My research interests lie in derived categories in the context of algebraic geometry, rep-
resentation theory of rings and algebras, and related fields. Currently, my research focuses
on derived categories of non-commutative algebras, schemes, and stacks using tools such as
generators, thick subcategories, and invariants like generation time and Rouquier dimen-
sion. Broadly, I am interested in studying spaces such as non-commutative schemes arise
from derived categories of modules over finite-dimensional k-algebras(or differential graded
algebras) and its applications to areas like non-commutative resolution of singularities, ho-
mological mirror symmetry and even in string theory. Non-commutative algebraic geometry
is extensively discussed in the works of [1, 23,28].

Derived categories, rooted in the work of Grothendieck and Verdier, have become cen-
tral in algebraic geometry by encoding information about varieties, schemes, and stacks via
coherent sheaves. For example, the Bondal–Orlov reconstruction theorem [8] shows that if
Db

coh(X) ∼= Db
coh(Y ) for smooth irreducible projective varieties X and Y , then X ∼= Y . The

study of derived categories is also significant since it provides a connection between geomet-
ric objects and algebraic ones. At a certain level, one can study a variety by associating
an algebra and working with the derived category of modules over the algebra. A theorem
proved by both Baer [2] and Bondal [7] says that if we have certain special object (called
tilting objects) T in the abelian category coh(X), where X is a smooth projective variety,
then Db

coh(X) is equivalent to Db
mod(A), where A is a finite-dimensional algebra. The cor-

responding abelian categories are not equivalent and thus at the level of derived categories
we find a connection between areas of algebraic geometry, representation theory, and non-
commutative algebra. This association can be understood with the following example which
is widely known in literature:

Example 1.1. Let P1 be the projective line over an algebraically closed field k. The category
coh(P1) is an hereditary abelian category whose objects are direct sums of torsion and torsion-
free. For the bounded derived category Db

coh(P1), we have

Db
coh(P1) ∼= Db

mod(kQ)

where kQ is a finite-dimensional k−algebra whose elements are the paths of the graph called
Kronecker quiver given by

• •

This example has been explained in great detail in [20], Chapter 5. Note that coh(P1) is not
equivalent to mod (kQ). Here, the tilting object T is given by O ⊕ O(1), where O is the
structure sheaf. The functor

Hom(T,−) : Db
coh(P1)

∼−→ Db
mod(kQ)

induces the triangle equivalence. Here, T = O ⊕ O(1) is called a strong generator which
has generation time one. In [22], Proposition 15, it is shown that the set of all possible
generation times, called the Orlov spectrum, for Db

coh(P1) is {1, 2}. Since 1 is the minimum
generation time, it is called the Rouquier dimension of Db

coh(P1). This can be found in [29].
The category also has a semiorthogonal decomposition: Db

coh(P1) ∼= ⟨⟨O⟩, ⟨O(1)⟩⟩.
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2. Derived Categories and Dimensions
During my Ph.D., my research focused on understanding bounded derived categories

of algebras and stacks through semiorthogonal decompositions, generators, and invariants
such as generation time, dimensions, and Orlov spectra. The bounded derived category
Db(A) of an abelian category A is a triangulated category. For a triangulated category
T , a classical generator is an object G from which all others can be obtained by standard
operations: cones, shifts, direct sums, and direct summands. G is called a strong generator if
only finitely many such steps are needed. The minimal number of steps required to generate
the entire category from G is its generation time. The collection of all generation times
forms the Orlov spectrum of the category, and its infimum is the Rouquier dimension of T .
A semiorthogonal decomposition of T is a sequence of full subcategories arranged so that
morphisms go only in one direction, and together they generate the whole category.

2.1. Orlov Spectra of Weighted Projective Lines
The Orlov spectrum was introduced by Orlov in [22], building on earlier work of Bon-

dal–Van den Bergh and Rouquier. Since then, the study of spectra and the gaps between
generation times has become an important theme in algebraic geometry and homological
mirror symmetry, as developed for instance by Ballard, Favero, Katzarkov, and Takahashi
[4, 31]. Despite its significance for understanding triangulated categories, the Orlov spec-
trum has been explicitly computed in only a few cases. One such case is that of the Dynkin
quivers An. Since An is of finite representation type, every object is a direct sum of finitely
many indecomposable modules. In [4], Ballard, Favero, and Katzarkov determined the Orlov
spectrum of Db

mod(kAn), where An is the Dynkin quiver of type A given by

1 2 · · · n+ 1

Weighted projective lines P(a, b), when viewed as a stacky curve, forms a natural gen-
eralization of the projective line. Like the projective line, the derived category of P(a, b) can
also be associated with the derived category of some quiver algebra. It was first introduced
by Geigle and Lenzing in [16] and since then, it has found relevance in the fields of algebraic
geometry and representation theory. These can be found in the works of Krause and Chen
in [10], Ruan and Wang in [30], Dimitrov and Katzarkov in [12] [13], [24].

In this project with my advisor Matthew Ballard, we study the derived category of
weighted projective lines P(1, 2) and explicitly compute its generation times and the Orlov
spectrum. In this project, we compute the exact generation time for particular objects.
Specifically, we have:
Lemma 2.1 (Ballard, B.) Let G be a strong generator in Db

coh(P(1, 2)). Then
(1) G = O ⊕O(1)⊕O(2) has generation time 1.
(2) G = O(−1)⊕ T1,q ⊕O has generation time 2.
(3) G = O ⊕ T2,q(−1) has generation time 3.
We also give an upper bound on the generation time of any strong generator G in this

category. These results help us to prove our main theorem:
Theorem 2.2 (Ballard, B.) The Orlov spectrum of Db

coh(P(1, 2)) is {1, 2, 3}.
Similarly to the example 1.1, we have an association of Db

coh(P(1, 2)) with Db
mod(kÃ3),

where Ã3.
Corollary 2.3 (Ballard, B.) The Orlov spectrum of Db

mod(kÃ3) is {1, 2, 3}.
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Here, Ã3 is the extended Dynkin quiver of type A:

1 2 3

In our ongoing project, we are trying to make progress in the following conjecture:
Conjecture 2.4 (Ballard, B.) The Orlov spectrum of Db

coh(P(a, b)) is {1, 2, · · · , a+ b}.
Proving this also sheds light on the derived categories of extended Dynkin quivers Ãn.

For P(1, n), the methods used in P(1, 2) generalize: identifying combinations of objects that
fail to generate, and bounding generation time when they do. For my future research, I plan
to pursue the following directions:

• Generation in derived categories of weighted projective lines of higher weights: I aim
to study generation in the derived categories of weighted projective lines with higher
weights by relating them to those of lower weights. This approach will build upon
the techniques developed in [14], Proposition 6.13, and [11], Proposition 6.5.

• Tubular weighted projective lines: I intend to explore the derived category of tubular
weighted projective lines through their relationship with Atiyah’s classification of
vector bundles on smooth elliptic curves and Ringel’s classification of modules over
canonical algebras of tubular type.

• Thick subcategories and generation times in hereditary abelian categories: More gen-
erally, I am interested in understanding the structure of derived categories of heredi-
tary abelian categories with indecomposable objects. As a first step, this project will
involve: (a) classifying thick subcategories of weighted projective lines P(a, b) follow-
ing [11], and (b) for categories with well-understood indecomposables, such as P(1, n),
estimating generation times by determining the lengths of maximal ghost sequences
for each type of indecomposable. This work may also incorporate computational
methods and programming assistance to handle explicit examples.

2.2. Preservation for Generation
One way of understanding dimension and generation in derived categories in the context

of non-commutative algebraic geometry is to relate them to the derived categories of more
familiar objects, such as commutative schemes.

Rouquier dimension provides a measure of the complexity of a derived category. In-
troduced by Rouquier in [29] as a lower bound for the representation dimension of finite-
dimensional algebras, it also plays an important role in algebraic geometry: he proved that
the Rouquier dimension of a smooth projective variety is bounded above by twice its Krull
dimension, and Orlov conjectured in [22] that Rdim(Db

coh(X)) = dim(X) whenever X is a
smooth quasi-projective scheme.

In recent joint work with Lank and Dey [6], we studied non-commutative schemes (X,A),
where X is a scheme and A is a coherent OX-algebra. Our goal was to relate generation
in such non-commutative settings to that of the underlying commutative scheme, and to
establish bounds on Rouquier dimension. We proved the following theorem:
Theorem 2.5 (B., Dey, Lank) Let X be a Noetherian J-2 scheme of finite Krull dimension,
and let π : OX → A be a coherent OX-algebra with full support. If G is a classical generator
of Db

coh(A), then Rπ∗G is a classical generator of Db
coh(X).

This shows that generators on the non-commutative side descend to the commutative
side. As a consequence, we obtained a general lower bound:
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Theorem 2.6 (B., Dey, Lank) If X is integral, Jacobson, catenary, Noetherian, and J-2,
and if A is a coherent OX-algebra with full support, then

Rdim
(
Db

coh(A)
)

≥ dim(X).

These results connect the Rouquier dimension of non-commutative schemes to funda-
mental invariants of the underlying commutative variety, providing a categorical tool to
measure their complexity.

2.3. Dimension Theory of Non-commutative Curves
Another fascinating way to understand and work with Non-commutative schemes is

through a categorical point of view. In [28], Reiten and Van den Bergh gave a categorical
notion of a non-commutative curve. They defined a non-commutative curve as follows:

Definition 2.7. A non-commutative curve is a k−linear Ext-finite abelian category with
homological dimension one.

In [28], Theorem v.1.2. Reiten and Van den Bergh point out that if A is a non-
commutative curve and it is Noetherian, smooth and connected, then A can be one of the
two possibilities: either it can be the category of modules over the path algebra of an acyclic
quiver or it can be the category of coherent sheaves on a smooth projective stacky curve. In
[22], Theorem 6, Orlov shows that the Rouquier dimension of the bounded derived category
of a smooth projective curve of genus ≥ 1 is one. In a categorical context, the significance
of computing dimensions becomes more relevant in order to understand non-commutative
schemes. It is therefore natural to ask the following question:
Question 2.8 What is the Rouquier dimension of a non-commutative curve?

In [13], Elagin and Lunts computed the Rouquier dimension for finite acyclic quivers
(both ADE and non-ADE), as well as for orbifold projective lines. In their earlier work
[29], Rouquier introduced additional invariants of triangulated categories, namely the Serre
dimension and the diagonal dimension. Ballard and Favero [3] defined the diagonal di-
mension of a variety and established bounds for the diagonal dimension of a variety or a
Deligne–Mumford stack. Later, Ikeda and Qiu [17] introduced the notion of the global di-
mension of stability conditions. The diagonal dimension of a smooth projective curve was
determined in [21], while the global dimension of an orbifold projective line has been com-
puted in [24]. In collaboration with Antonios–Alexandros Robotis and Isaac Goldberg, we
aim to extend these results and address the following question:
Question 2.9 What are the values of Rouquier dimension, diagonal dimension, Serre di-
mension and global dimension of a non-commutative curve?

In this joint work, we have generalized the results on dimensions of derived categories
of coherent sheaves on smooth projective varieties to smooth orbifold curves. These help us
to complete the computations for dimensions of non-commutative curves.
Theorem 2.10 (B., Robotis, Goldberg) Let X be an orbifold curve. Then:

(a) the Rouquier dimension of Db
coh(X ) is one.

(b) Ddim(X ) = 1 if and only if deg(ωX ) < 0. Otherwise, Ddim(X ) = 2.
(c) If X is a smooth and projective Deligne–Mumford stack over a field k, then

Sdim(Db(X )) = Sdim(Db(X )) = n.
(d) If X is an orbifold curve over C, then gldim(X ) = 1.
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This project adds to the study of dimensions for a non-commutative curve. This also
shows that the conjecture by Elagin and Lunts in [15] holds true in the case of non-
commutative curve. They conjectured that for a smooth and regular differential graded
algebra A over a field such that the upper and lower Serre dimension of perf(A), the cate-
gory of perfect complexes over A are equal, the following inequality holds: Rdim(perf(A)) ≤
Sdim(perf(A)) ≤ Ddim(perf(A)).

In this project, we have shown that the Rouquier dimension of a non-commutative curve
is one. It would be interesting to know if the converse holds.
Question 2.11 Let A be an abelian category such that RdimDb(A) ≤ 1. Then is A a
non-commutative curve?

Abelian categories A whose derived categories Db(A) have Rouquier dimension zero have
long been classified. In the future, I would like to work on a classification of A for which
RdimDb(A) = 1. I would like to know for which other abelian categories the inequality
conjectured by Elagin and lunts hold true. One approach to address this conjecture, in the
case of certain DG-algebras(like Calabi-Yau DG algebras) would be to associate t-structures
with generation.
Non-commutative schemes, as described by Orlov in [23], can also be studied from the point
of view of differential graded algebras over a field. This makes the study of DG-algebras
more interesting. In the future, similar to the motivation of the project 2.2, I plan to study
the properties of the bounded derived category of perfect complexes on a DG-algebra A
and relate properties like strong generation, t-structures, silting objects with the bounded
derived category of modules over the k−algebra H0(A), the zeroth homology of A, since finite
dimensional algebras and their derived categories are comparatively well known. These works
are in the spirit of works by Stevenson, Brown, Shridhar, Levins, Elagin, Lunts, and Orlov
in [9, 15,23,27].

2.4. Derived McKay Correspondence and Semi-Orthogonal Decomposition

Similar to the notions of generation and dimension, the study of larger derived cate-
gories often requires breaking them down into more manageable pieces. A key tool for this
is semiorthogonal decomposition, which allows us to understand a derived category by ana-
lyzing its smaller components that together generate the whole.

The Derived McKay Correspondence Conjecture states that for a finite subgroup G ⊂
SL(2,C), the bounded derived category of coherent sheaves on any crepant resolution Y
of Cn/G is equivalent to the derived category of finitely generated modules over the skew
group algebra [18, 19]. In joint work originating from the AMS MRC 2023, we studied re-
flection groups of rank two generated by order-two reflections. Building on the conjecture of
Polishchuk–Van den Bergh [25], which predicts that the components of the semi-orthogonal
decomposition of DG(X) correspond to the irreducible representations of G, we proved the
following:
Theorem 2.12 (B., Davidov, Faber, Honigs, McDonald, Overton-Walker, Spence, [5] The-
orem A ) Let G = G(2m,m, 2) with m ≥ 3, or G12, G13, G22. Then

DG(C2) ∼= ⟨D(B1), . . . , D(Br), E1, . . . , En, D(C2/G)⟩,

where Bi are the normalizations of the irreducible components of the branch divisor, Ej are
exceptional objects, and r + n+ 1 equals the number of irreducible representations of G.
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Together with Potter’s work [26], this confirms the Polishchuk–Van den Bergh conjecture
for groups G ≤ GL(2,C) generated by order-two reflections, via explicit computations on
the H-Hilbert scheme.

References
[1] Michael Artin and James J Zhang, Noncommutative projective schemes, Advances in mathematics 109

(1994), no. 2, 228–287.
[2] Dagmar Baer, Tilting sheaves in representation theory of algebras, Manuscripta mathematica 60 (1988),

323–347.
[3] Matthew Ballard and David Favero, Hochschild dimensions of tilting objects, International Mathematics

Research Notices 2012 (2012), no. 11, 2607–2645.
[4] Matthew Ballard, David Favero, and Ludmil Katzarkov, Orlov spectra: bounds and gaps, Inventiones

mathematicae 189 (2012), no. 2, 359–430.
[5] Anirban Bhaduri, Yael Davidov, Eleonore Faber, Katrina Honigs, Peter McDonald, C Eric Overton-

Walker, and Dylan Spence, An explicit derived mckay correspondence for some complex reflection groups
of rank two, arXiv preprint arXiv:2412.17937 (2024).

[6] Anirban Bhaduri, Souvik Dey, and Pat Lank, Preservation for generation along the structure morphism
of coherent algebras over a scheme, Bulletin of the London Mathematical Society (2025).

[7] A Bondal, Helices, representations of quivers and koszul algebras. helices and vector bundles, 75–95,
London Math. Soc. Lecture Note Ser 148.

[8] Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of
autoequivalences, Compositio Mathematica 125 (2001), no. 3, 327–344.

[9] Michael K Brown, Andrew J Soto Levins, and Prashanth Sridhar, Existence of balanced dualizing dg-
modules, arXiv preprint arXiv:2506.02398 (2025).

[10] Xiao-Wu Chen and Henning Krause, Introduction to coherent sheaves on weighted projective lines, arXiv
preprint arXiv:0911.4473 (2009).

[11] Yiyu Cheng, Wide subcategories of a domestic weighted projective line, Journal of Pure and Applied
Algebra 228 (2024), no. 9, 107669.

[12] George Dimitrov and Ludmil Katzarkov, Bridgeland stability conditions on wild kronecker quivers, Ad-
vances in Mathematics 352 (2019), 27–55.

[13] Alexey Elagin, Calculating dimension of triangulated categories: path algebras, their tensor powers and
orbifold projective lines, Journal of Algebra 592 (2022), 357–401.

[14] , Thick subcategories on weighted projective curves and nilpotent representations of quivers, arXiv
preprint arXiv:2407.01207 (2024).

[15] Alexey Elagin and Valery A Lunts, Three notions of dimension for triangulated categories, Journal of
Algebra 569 (2021), 334–376.

[16] Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory
of finite dimensional algebras, Singularities, representation of algebras, and vector bundles: Proceedings
of a symposium held in lambrecht/pfalz, fed. rep. of germany, dec. 13–17, 1985, 2006, pp. 265–297.

[17] Akishi Ikeda and Yu Qiu, q-stability conditions on calabi-yau-x categories, arXiv preprint
arXiv:1807.00469 (2018).

[18] Akira Ishii, On the mckay correspondence for a finite small subgroup of gl (2, ) Journal für die reine
und angewandte Mathematik (Crelles Journal) 2002 (2002), no. 549, 221.

[19] Mikhail Kapranov and Eric Vasserot, Kleinian singularities, derived categories and hall algebras, arXiv
preprint math (1998).

[20] Henning Krause, Homological theory of representations, Vol. 195, Cambridge University Press, 2021.
[21] Noah Olander, Diagonal dimension of curves, International Mathematics Research Notices 2024 (2024),

no. 10, 8172–8184.
[22] Dmitri Orlov, Remarks on generators and dimensions of triangulated categories, arXiv preprint

arXiv:0804.1163 (2008).
[23] , Smooth and proper noncommutative schemes and gluing of dg categories, Advances in Mathe-

matics 302 (2016), 59–105.
[24] Takumi Otani, Global dimension of the derived category of an orbifold projective line, arXiv preprint

arXiv:2306.16673 (2023).
6



[25] Alexander Polishchuk and Michel Van den Bergh, Semiorthogonal decompositions of the categories of
equivariant coherent sheaves for some reflection groups., Journal of the European Mathematical Society
(EMS Publishing) 21 (2019), no. 9.

[26] Rory Potter, Derived categories of surfaces and group actions., Ph.D. Thesis, 2017.
[27] Theo Raedschelders and Greg Stevenson, Proper connective differential graded algebras and their geo-

metric realizations, European Journal of Mathematics 8 (2022), no. Suppl 2, 574–598.
[28] Idun Reiten and Michel Van den Bergh, Noetherian hereditary abelian categories satisfying serre duality,

Journal of the American Mathematical society 15 (2002), no. 2, 295–366.
[29] Raphaël Rouquier, Dimensions of triangulated categories, Journal of K-theory 1 (2008), no. 2, 193–256.
[30] Shiquan Ruan and Xintian Wang, t-stabilities for a weighted projective line, Mathematische Zeitschrift

297 (2021), no. 3, 1119–1160.
[31] Ryo Takahashi, Uniformly dominant local rings and orlov spectra of singularity categories, arXiv preprint

arXiv:2412.00669 (2024).

7


	1. Introduction
	2. Derived Categories and Dimensions
	References

